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Wiener, Matthew C. and Barry J. Richmond. Using response
models to estimate channel capacity for neuronal classification of
stationary visual stimuli using temporal coding.J. Neurophysiol.82:
2861–2875, 1999. Both spike count and temporal modulation are
known to carry information about which of a set of stimuli elicited a
response; but how much information temporal modulation adds re-
mains a subject of debate. This question usually is addressed by
examining the results of a particular experiment that depend on the
specific stimuli used. Developing a response model allows us to ask
how much more information is carried by the best use of response
strength and temporal modulation together (that is, the channel ca-
pacity using a code incorporating both) than by the best use of spike
count alone (the channel capacity using the spike count code). This
replaces dependence on a particular data set with dependence on the
accuracy of the model. The model is constructed by finding statistical
rules obeyed by all the observed responses and assuming that re-
sponses to stimuli not presented in our experiments obey the same
rules. We assume that all responses within the observed dynamic
range, even if not elicited by a stimulus in our experiment, could be
elicited by some stimulus. The model used here is based on principal
component analysis and includes both response strength and a coarse
(610 ms) representation of temporal modulation. Temporal modula-
tion at finer time scales carries little information about the identity of
stationary visual stimuli (although it may carry information about
stimulus motion or change), and we present evidence that, given its
variability, it should not be expected to do so. The model makes use
of a linear relation between the logarithms of mean and variance of
responses, similar to the widely seen relation between mean and
variance of spike count. Responses are modeled using truncated
Gaussian distributions. The amount of stimulus-related information
carried by spike count in our data are 0.35 and 0.31 bits in primary
visual and inferior temporal cortices, respectively, rising to 0.52 and
0.37 bits for the two-principal-component code. The response model
estimates that the channel capacity is 1.1 and 1.4 bits, respectively,
using the spike count only, rising to 2.0 and 2.2 bits using two
principal components. Thus using this representation of temporal
modulation is nearly equivalent to adding a second independent cell
using the spike count code. This is much more than estimated using
transmitted information but far less than would be expected if all
degrees of freedom provided by the individual spike times carried
independent information.

I N T R O D U C T I O N

It is not yet completely understood how information is
encoded in neuronal spike trains and how much information is
carried. In the visual system, it is clear that the number of

action potentials elicited by a visual stimulus is an important
part of the code for carrying stimulus-related information.
There is now strong evidence that modulation of the firing rate
during the course of the response to a stimulus presented for
the period of a typical intersaccadic interval (;300 ms) carries
additional information that is not available from average re-
sponse strength alone (Heller et al. 1995; Richmond and Op-
tican 1987, 1990; Tovee et al. 1993; Victor and Purpura 1996).
Here we investigate how much information temporal modula-
tion adds.

As often understood, the answer to this question depends on
the experiment from which we take our data. Different sets of
stimuli will elicit different sets of responses, which may en-
code more or less information using temporal modulation.
Using response models can help us answer a question less tied
to a particular experiment: how much more information can be
carried by the best use of temporal modulation than by the best
use of spike count alone? The maximum amount of informa-
tion that can be carried by a neuron using a particular code
(such as spike count, or spike count along with some repre-
sentation of temporal modulation) is called its channel capacity
(Cover and Thomas 1991; Shannon and Weaver 1949). The
channel capacity is defined uniquely for a particular neuron
using a particular code. Channel capacity’s uniqueness comes
at a price, however: to calculate channel capacity, we must
know all possible responses that can be elicited from a neuron
rather than only those observed in our experiment.

Our goal is to construct a response model that not only
describes the responses observed in an experiment but also can
be used to predict the responses that would be elicited by other
stimuli. This substitutes dependence on the accuracy of the
model for the limitations imposed by the amount of data
typically collected in experiments. Ideally we would like this
model to include all features of the response that do carry
unique information, without complicating matters by including
features that carry little or no unique information. Recently
Gershon et al. (1998) presented an approach to constructing
such a response model involving spike count only. The model
used a widely known relation between mean and variance of
spike count (Dean 1981; Lee et al. 1998; O’Keefe et al. 1997;
Tolhurst et al. 1981, 1983; van Kan et al. 1985; Vogels et al.
1989), and the fact that distributions of spike count were well
fit by a truncated Gaussian. This model allowed Gershon et al.
(1998), given any mean spike count, to describe the set of
responses giving rise to that mean. The set of responses cor-
responding to a given mean did not depend on whether the
mean had actually been elicited by a stimulus in the experi-
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ment. Thus the model predicted the responses associated with
any possible mean. Because any set of responses has a mean,
the model described all sets of responses that could be elicited
from the neuron. This allowed Gershon et al. to estimate the
neuron’s channel capacity using the spike count code.

Here we extend the approach of Gershon et al. (1998) to a
code that includes the temporal patterns of rate modulation of
the responses. We represent the neuronal responses using the
first two principal components. The coefficient with respect to
the first principal component is strongly correlated with spike
count, and the coefficient with respect to the second principal
component is a coarse (610 ms) measure of the time course of
a response, often indicating whether spikes tend to be concen-
trated at the beginning of a response (Richmond and Optican
1987, 1990). We identify relations among the means and
variances of the principal component coefficients similar to the
relation between mean and variance of spike count. We also
find that distributions of the principal component coefficients
are well fit by truncated Gaussian distributions. Now a set of
responses must be described by two means—one for each
component of the code. As in Gershon et al. (1998), this allows
us to predict both the response strength and the temporal
patterns of rate modulation for all possible sets of responses.

We estimated channel capacity on the basis of the response
models for spike count and for the first two principal compo-
nents. We found that the two-component code on average
increases the channel capacity by 0.8–0.9 bits over that carried
by spike count alone (1.1 and 1.4 bits, respectively) in neurons
in the primary visual cortex (V1) and area TE of inferior
temporal cortex. Therefore the contribution temporal modula-
tion can make to neural information processing for identifica-
tion of stationary stimuli, although far smaller than if all
degrees of freedom in a spike train actually were used to carry
such information, is substantially larger than would be esti-
mated from only the responses seen in our experiment. This
contrasts with situations in which rapidly changing stimuli
drive precisely time-locked neuronal responses, which can lead
to extremely high information transmission rates (Buracas et
al. 1998). Finally, we present evidence that very little addi-
tional channel capacity for identifying stationary stimuli can be
expected by using more principal components (that is, by
representing the rate variation with higher precision).

M E T H O D S

Data sets

We performed new analyses using previously published data. The
data came from two studies of supragranular V1 complex cells, each
study using two rhesus monkeys performing a simple fixation task
(Kjaer et al. 1997; Richmond et al. 1990), and from one study of
neurons in IT cortex in two other monkeys performing a simple
sequential nonmatch-to-sample task (Eskandar et al. 1992). In these
three studies, the visual stimuli were two-dimensional black-and-
white patterns based on the Walsh functions (Fig. 1).

In both V1 studies, stimuli were presented centered on the neuronal
receptive fields, located in the lower contralateral visual field 1–3°
from the fovea. Stimuli covered the excitatory receptive field. At 3°
eccentricity, the stimuli were;2.5° on a side. In the first V1 study
(V1 set 1) (Richmond et al. 1990), 128 stimuli were used: sixty-four
8 3 8 pixel patterns and their contrast-reversed counterparts. For V1
set 2 (Kjaer et al. 1997), 16 stimuli were used: a set of eight 163 16
pixel patterns and their contrast-reversed counterparts.

In the IT study (Eskandar et al. 1992), stimuli were presented
centered on the fovea. The patterns were 4° square. Thirty-two stimuli
were used: sixteen 43 4 pixel patterns and their contrast-reversed
counterparts.

The stimulus was displayed for 320 ms in V1 and 352 ms in IT. To
account for response latencies and to avoid contamination from off-
responses, spikes were counted during the interval from 30 to 300 ms
after stimulus onset for the V1 neurons and 50 to 350 ms after
stimulus onset for the IT neurons. Gershon et al. (1998) found that
both transmitted information and channel capacity based on the spike
count code are stable with respect to small changes in these counting
windows. For each neuron, each stimulus was presented approxi-
mately the same number of times (62) in randomized order. Different
neurons received different numbers of presentations. The number of
presentations of each stimulus was between 10 and 50 in V1 and
between 19 and 50 in IT. Seven V1 neurons with,10 trials per
stimulus were omitted from these analyses to ensure stability of
information estimates (Golomb et al. 1997; Wiener and Richmond
1998). The timing of events, including spikes, was recorded with 1-ms
resolution.

Quantifying the responses

Each spike train was low-pass filtered by convolution with a Gauss-
ian distribution with standard deviation of 5 ms and resampled at 1-ms
resolution to create a spike density function (Fig. 2,A and B).
Convolving and resampling in this way avoids a problem of binned
histograms, which do not distinguish between spikes at the center of
a bin and those near the edges (Richmond et al. 1987; Sanderson and
Kobler 1976; Silverman 1986).

FIG. 1. Walsh patterns. For the primary visual cortex (V1) set 1, the 64
stimuli (A) and the corresponding contrast-reversed set were presented on the
receptive fields while the monkeys fixated. For V1 set 2, the 8 stimuli (B) and
the corresponding contrast-reversed set were presented on the receptive field
while the monkey fixated. For both, the stimuli were 2.5° on a side (covering
the excitatory receptive field and some of the surround). For the inferior
temporal cortex (IT), the 43 4 set (16 stimuli) in thebottom left cornerof A
and the corresponding contrast-reversed set were used as the monkey per-
formed a nonmatch-to-sample task. Stimuli were 4° on a side and were
centered at the point of fixation.
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We used principal component analysis to reduce the dimension of
the data set. Principal component analysis defines an ordered set of
axes, each accounting for more of the variance in the data set than
those that follow. These axes can be computed by finding the eigen-
vectors of the covariance matrix of the data (Ahmed and Rao 1975;
Deco and Obradovic 1996). Each data point is defined uniquely by its
projections onto these axes; these values are called the coefficients
with respect to the principal components, or principal component
coefficients. We use the code formed by the firstk principal compo-
nent coefficients because it is the optimalk-dimensional linear code
for least-squares reconstruction and minimizes an upper bound of
information loss through a one-layer network (Campa et al. 1995;
Deco and Obradovic 1996; Plumbley 1991). Principal-component
analysis has a long history in signal analysis (Ahmed and Rao 1975)
and has been used to study information coded by temporal modulation
in neuronal responses (Heller et al. 1995; Kjaer et al. 1994; McClurkin
et al. 1991; Optican and Richmond 1987; Richmond and Optican
1987, 1990; Tovee and Rolls 1995; Tovee et al. 1993). Figure 2 shows
rasters of the responses elicited by two stimuli from a single V1
neuron, the corresponding spike density functions, the first four prin-
cipal components,F1–F4, of the responses from the neuron, and the
principal component representation of the two responses.

In this study, each neuronal response was represented by the cor-
responding coefficients with respect to the first and second principal
components of the spike density functions (Richmond and Optican
1987, 1990). We call these coefficientsf1 andf2. f1 andf2 can be
translated by arbitrary constants as long as the appropriate constant

multiples ofF1 andF2 are subtracted from the results. This manip-
ulation is similar to rewriting the expressiona 1 bx as a 1 bx0 1
b(x 2 x0). It is conventional to use the average waveform as the base
waveform, translating the axes so that the average waveform corre-
sponds to a vector of zeros. This causes some values off1 andf2 to
be negative. Here we translated the axes so thatf1 andf2 are always
positive and logarithms could be taken. The specific form of the new
base waveform is not important for our analyses.

Model of response variability

Estimating channel capacity requires estimating all possible (f1,
f2) response distributions. Our estimate of these distributions must be
based on the responses elicited by stimuli actually presented in our
experiments. It is important to note that if the responses elicited by the
stimuli presented in our experiments are not representative of the
responses elicited by other stimuli, our model will generalize poorly.

Ideally, we would estimate the two-dimensional conditional distri-
bution of responsesp(f1, f2us) directly for each stimuluss. However,
we did not have enough responses to each stimulus to do so. Instead,
we described the distributions off1 andf2 individually, and assumed
that f2 was independent off1 (except for correlations imposed by
truncation at the bounds of the response space, see following text). To
be precise

p~f1us! 5 G~m1s, s1s
2 !/K1~f1! when f1 $ f1

min

5 0 otherwise (1)

FIG. 2. Representation of spike trains using principal
component analysis.A: rasters of the responses of a single V1
cell to 2 stimuli. Horizontal axis shows time from stimulus
onset in milliseconds. Each tick mark represents an action
potential; each row of tick marks represents a single stimulus-
elicited response.Left andright: responses to different stim-
uli. Mean spike count is equal for the 2 sets of responses, but
the responses to the 2nd stimulus (right) show a greater
concentration of spikes occurring between;50 and 120 ms
after stimulus onset.B: spike density functions corresponding
to the rasters above. Horizontal axis shows time from stim-
ulus presentation (ms) on the same scale as for the rasters.
Vertical axis shows the instantaneous firing rate at each time
in spikes/s. Dark line shows mean firing rate at each time; the
wider gray line shows one standard error above and below the
mean. Concentration of spikes in the early part of the re-
sponses to the 2nd stimulus (right) is again apparent.C: 1st
4 principal components of the responses of the cell. Horizon-
tal axis of each panel shows time, in milliseconds, after
stimulus presentation. Note that a positive coefficient for the
2nd principal component indicates a high concentration of
spikes near the beginning of a response. Scale of the principal
components and the corresponding coefficients is arbitrary
and therefore is omitted.D: principal component representa-
tion of the responses shown in the rasters and densities. Each
bar plot shows the mean and standard deviation of the 1st 4
(left to right) principal component coefficients of the re-
sponses. Line connecting the bases of the bars shows 0. Note
the difference in the 2nd principal component coefficients
between the 2 panels. This difference reflects the fact that the
spikes in the responses shown in theright are more concen-
trated at early times than are the spikes in the responses
shown in theleft. (In the calculations in the text the principal
components are translated to always be positive; here we use
principal components centered at 0 to emphasize the differ-
ence in the the coefficients with respect to the 2nd principal
component.)
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and

p~f2us, f1! 5 G~m2s, s2s
2 !/K2 when f2

min~f1! # f2 # f2
max~f1!

5 0 otherwise (2)

whereG is the Gaussian distribution with indicated mean and vari-
ance,mjs ands js

2 are the mean and variance offj elicited by stimulus
s, f1

min is the minimum value off1, f2
min (f1) andf2

max (f1) are the
calculated bounds onf2 for givenf1, andK1 5 *f1

min
` df1p(f1us) and

K2 5 *
f2

max~f1!

f2
min~f1!

df2p(f2us) are normalizing factors. We show in the
results that the Gaussian distribution provides an acceptable fit to the
distributions off1 andf2 for each stimulus.

Although f1 and f2 are by construction uncorrelated in the re-
sponses from each neuron, correlations are sometimes present in the
responses elicited by individual stimuli. InRESULTS, we observe that
the set of responses is bounded; these bounds will be described
quantitatively at that point. We observe correlations betweenf1 and
f2 only in those distributions lying close to the response bounds.
Therefore our model assumes that correlations betweenf1 and f2

arise only as a result of truncating distributions at the boundaries of
the response space. We make this same assumption when character-
izing the set of all possible response distributions to calculate channel
capacity. We make this assumption because we do not have data to
justify any other: under other circumstances (and with sufficient data)
we might find, and include in a model, such correlations. The close
match of our estimates of transmitted information to those obtained
using other well-validated methods (seeRESULTS) suggests that in this
case the assumption is justified.

Means and variances of response distributions

Two-dimensional Gaussian distributions (given our correlation as-
sumptions, preceding text) are characterized by two means and two
variances. All four parameters can be measured from experimentally
observed responses. InRESULTS, we show that the variances off1 and
f2 distributions are related to meanf1 by a power law

s i
2 5 exp~ai!m1

bi (3)

which is equivalent to

log ~s i
2! 5 ai 1 bi log m1 (4)

wheremi ands i
2 are the mean and variance offi, for i 5 1, 2.ai and

bi are estimated by linear regression. These regressions were used to
estimates is

2 for i 5 1, 2 in Eqs. 1and2. Note that the variances of
both f1 and f2 were modeled as a function of the mean off1 (we
justify this in RESULTS).

Estimates of log(m) and log(s2) obtained by taking the logarithm of
the sample mean and variance are biased, resulting in underestimation
of the variance of response distributions and therefore overestimation
of transmitted information. We corrected for the bias using a Taylor
series expansion; only a few terms are needed for good results
(Kendall and Stuart 1961, p. 4–6).

We also used linear regression to estimate the mean and variance of
the values off2 when f1 takes on a given value, no matter which
stimulus elicited the response.

Transmitted information and channel capacity

The information carried in a neuron’s response about which mem-
ber of a set of stimuli is present (Cover and Thomas 1991) is defined
as

I ~R; S! 5 O
s,r

p~s!p~r us! log2

p~r us!

p~r !
(5)

whereS is the set of stimulis, R is the set of responsesr, p(rus) is the
conditional probability of responser given stimuluss, p(s) is the
probability that stimuluss occurred, andp(r) 5 (s p(rus)p(s) is the
probability of responser. Equation 5is general; it can be applied to
responsesr of any dimension. We used both the one-dimensional
spike count code and the two-dimensional principal component code,
r 5 f 5 (f1, f2).

The transmitted informationI(F;S) depends onp(s), the distribution
of presentation probabilities of the stimuli (seeEq. 5). The channel
capacityof a cell is the maximum value of transmitted information
over all distributionsp(s), where the set of stimuliS should now be
understood to include all possible visual stimuli. Finding this maxi-
mum requires knowing the conditional response distributionsp(rus)
for all stimuli s. We estimate the distributions using the model
described earlier.

From Eqs. 1and2, we see that estimatingp(fum), the probability
with which the distribution with meanm 5 (m1, m2) elicits response
f 5 (f1, f2), requiresm1, m2, s1

2, and s2
2. Given the power-law

relations between the means and variances of distributions (Eq. 3), m1

determines boths1
2 and s2

2 but not m2. Thus for eachm1 there are
many possible response distributions, identical except for translation
in f2. Each distribution, then, is characterized completely by the two
meansm1 andm2. When calculating transmitted information, only the
observed distributions are considered (Fig. 3,top); when calculating
channel capacity, all possible distributions must be considered (Fig. 3,
bottom).

According to this model, two stimuli that elicit the samem1 andm2

from a neuron in fact elicit identical response distributions and there-
fore cannot be distinguished from one another by that neuron. Thus a
stimulus can be identified simply by the mean response it elicits.
Equation 5now can be written

I ~F; S! 5 E dmp~m! E dfp~fum! log2

p~fum!

p~f!
(6)

wherep(m) is the probability with which the distribution with meanm
is presented,p(fum) is the probability with which the distribution with
meanm 5 (m1, m2) elicits responsef 5 (f1, f2), andp(f) 5 *m df
p(fum) is the total probability with which responsef occurs. The
channel capacity is the maximum of this expression over the two-
dimensional distribution of probabilitiesp(m) 5 p(m1, m2).

A derivation of Eq. 6 is given in Gershon et al. (1998). That
derivation is expressed in terms of the spike count code but remains
valid when spike count is replaced with any other response code.
Information and channel capacity based on the spike count code were
calculated using the method of Gershon et al. (1998).

The search for the maximizing set of probabilities is subject to three
constraints: the probabilities must be nonnegative; the probabilities
must sum to one; and the range of means must be finite. The first two
constraints arise from intrinsic properties of probability distributions.
If the third constraint is violated, the transmitted information can be
infinite and the problem of maximizing transmitted information is
ill-posed. The implementation of these constraints and other numer-
ical issues are discussed in theAPPENDIX.

We did not penalize distributions for probability weight falling
outside the response envelope bounds forf2 (as we did for probability
weight falling outside the observed range off1); we simply ignored
that portion of the distribution. This allows the widest possible sep-
aration between distributions, causing our estimates of channel capac-
ity to be larger than if the boundaries had been strictly enforced. Thus
our procedure was designed to give the most generous estimates
possible (consistent with the constraints estimated from the data) of
channel capacity associated with temporal coding.
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R E S U L T S

We considered 6 neurons from one experiment in V1, 29
neurons from a second experiment in V1, and 19 neurons from
IT. To calculate transmitted information and channel capacity,
we characterized the space of responses, parameterized byf1
andf2, the coefficients with respect to the first two principal
components; determined the regression relations for the means
and variances off1 and f2 elicited by the stimuli; and con-
structed a model for the distributions off1 andf2.

f1 andf2 are somewhat abstract, but are related to biolog-
ically relevant aspects of the response. Responses with high
(low) values off1 correspond to responses with high (low)
numbers of spikes (McClurkin et al. 1991; Richmond and
Optican 1987, 1990; Tovee et al. 1993); in our data, the median
correlation between spike count andf1 was 0.91 (interquartile
range 0.86–0.97).f2 is a coarse (610 ms) measure of tem-
poral modulation (Optican and Richmond 1987; Richmond and
Optican 1987). It often characterizes whether or not spikes are
concentrated in the early part of the response (Fig. 2).

Response space

Although the coefficients with respect to the first and second
principal components (f1 andf2) are linearly uncorrelated by

construction (Ahmed and Rao 1975; Deco and Obradovic
1996), they are not independent. Figure 4 shows scatterplots of
f2 versusf1 for two cells from V1 and two cells from IT. In
these four cells, and in all other cells in our sample, the range
of f2 increased with increasingf1. The apex of the cone is the
(f1, f2) pair representing trials when no spikes were elicited.

The limited range off2 for a given value off1 reflects the
fact that only a certain amount of temporal modulation is
possible with a given number of spikes. If each ofk spikes in
a train could be placed in any ofn time bins, assuming only
that no bin could hold more than one spike, the number of
possible patterns would be (k

n) 5 n!/[k!(n 2 k)!]. The range of
values off2 seen under this combinatorial assumption (Fig. 5,
thin line) is much wider than the range observed experimen-
tally for any given number of spikesk (Fig. 5, dots).

Because we do not understand the spike generation process
well enough to predict the response envelope, we developed a
statistical model of the mean and variance of distributions of
f2 corresponding to different values off1. We divided the
range off1 into a number of bins, each of which defines af1
slice in the two-dimensional response space. Figure 6A shows
the top left scatterplotfrom Fig. 4 with slice boundaries su-
perimposed. The mean and variance off2 were calculated in

FIG. 3. Schematic of distributions used to calculate
transmitted information and channel capacity. Lines repre-
sent the boundaries of thef1-f2 envelope: region off1-f2

space in which responses fall. Ellipses represent distribu-
tions of responses elicited by various stimuli.Top: calcu-
lating transmitted information in an experiment. Response
distributions elicited by 4 stimuli, A, B, C, and D, are
shown. (These stimuli are merely illustrative and do not
correspond to any stimuli from our actual experiments.)
Mean values off1 andf2, m1 andm2, of each distribution
can be calculated from the data, and the variances off1 and
f2, s1

2 and s2
2, estimated from the mean off1 using the

regression relations.Bottom: when considering channel ca-
pacity, we must consider all possible pairs of meansm1, m2.
Value ofm1 determines boths1

2 ands2
2, so all distributions

with a given value ofm1 will have the same shape. Distri-
butions elicited by A, B, and C (top) are shown, along with
several other possible distributions with the same mean
values off1. (Distribution elicited by stimulus D is omitted
for clarity.)
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each f1 slice. Figure 6B shows an example of the linear
relation between log(variance) off2 and log(mean) off1 in
eachf1 slice. This relation was significant in 47/54 neurons at
the P , 0.01 level (medianr2 5 0.91, iqr 5 0.79–0.94).
Figure 6C shows an example of a fit of the mean off2 as a
quadratic function of the mean off1 in each slice. The qua-
dratic fit was rejected in only 3/54 neurons (x2 test,p # 0.01)
and is used here.

We used these relations to estimate the bounds of the enve-
lope containing the response space bym̂f2(f1) 6 k6ŝf2(f1),
wherem̂ andŝ are the mean and standard deviation estimated
as in the preceding text. For each cell,k1 (k2) was chosen so
that all but 0.1% of the points fell below (above) the boundary.
Several points were allowed to fall outside the bounds to
prevent excessive influence of outliers. We show below that
small changes in the response envelope do not affect our
results. For all 54 neurons, the response space envelope esti-
mated using the regression (thick lines in Fig. 5) was much
narrower than the envelope assuming spikes can fall in arbi-
trary 1-ms bins (the thin lines in Fig. 5).

Mean-variance relations off1 and f2 by stimulus

The logarithms of the mean and variance of spike count in
response to different stimuli are linearly related (Dean 1981;
Gershon et al. 1998; Lee et al. 1998; O’Keefe et al. 1997;
Tolhurst et al. 1981, 1983; van Kan et al. 1985; Vogel et al.
1989). Becausef1 is correlated strongly with spike count
(Richmond and Optican 1987), it is natural that the logarithms
of the mean and variance off1 also are related linearly (in
52/54 neurons atP , 0.01; medianr2 5 0.79, iqr 5 0.61–
0.91; see Fig. 7). By simple extension, we might expect there
to be a linear relationship between log(mean) and log(variance)
of f2 as well. However, such a relation existed in only 11/54
of the neurons (P , 0.01; medianr2 5 0.09,iqr 5 0.02–0.21).
Instead, we found that the variance off2 elicited by a single
stimulus increased with the mean off1 (in 43/54 neurons at
P , 0.01; medianr2 5 0.66,iqr 5 0.38–0.84; see Fig. 8). This
is consistent with the fact that the range (variance) off2
increases with increasingf1 (Fig. 4). Adding mean(f2) to the
model added very little explanatory power (median increase in
r2 5 0.02, iqr 5 0.0–0.09); for simplicity, we omitted

FIG. 4. Scatterplot of responses for 4 cells. For each panel, the horizontal axis showsf1 and the vertical axis showsf2. Each
point shows the response (f1, f2) for a single trial. Althoughf1 andf2 are linearly uncorrelated (by construction), they are not
independent: range off2 depends on the value off1.
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mean(f2) from the model. Using these regressions, we pre-
dicted the variance off1 and f2 distributions elicited by
different stimuli from the means of thef1 distributions.

To check that our regression estimates were robust, we
divided the data for each neuron into two sets. The regressions
for the two halves were statistically indistinguishable (P .
0.01) for all 54 neurons. The fact that different subsets of the
data result in indistinguishable regression lines shows that the
model can generalize, and supports using the model to predict
the structure of responses to stimuli other than those presented
in our experiments.

Distributions of principal component coefficients

Estimating the transmitted information between the visual
stimuli and the neuronal responses requires estimating the
conditional response distributionsp(f1us) andp(f2us). We as-
sumed that thef1 andf2 distributions are separable (except for
the relation betweenf1 and the range off2) and examined
normal, lognormal, and gamma distributions, each truncated at
the bounds of the response space, as models for thef1 andf2
distributions.

Using the observed mean and the variance estimated from
the regression relation, the normal distribution (truncated at the
boundary of the response space) was an acceptable fit for 79%
of the distributions off1 elicited by individual stimuli, 83% of
the distributions off2 elicited by individual stimuli, and 79%
of the distributions off2 given f1 regardless of stimulus
(Kolmogorov-Smirnov test,P , 0.05). The gamma distribu-
tion was acceptable in almost exactly the same cases as the
normal distribution, but the lognormal distribution was rejected
much more frequently. We chose to use the normal distribu-
tion. Because the gamma distribution fit nearly as well as the
normal, the information calculations presented in the following
text were repeated using the gamma distribution for several
cells; the results were indistinguishable from those obtained
using the normal distribution.

Transmitted information

In this study, our goal was to estimate channel capacity, not
transmitted information (which has been estimated for these
data in the past) (see Eskandar et al. 1992; Heller et al. 1995;
Kjaer et al. 1997; Richmond et al. 1990). Transmitted infor-
mation was calculated as a test of our model: estimates based
on the model can be compared with estimates obtained using a
previously validated neural network method (Golomb et al.
1997; Kjaer et al. 1994). If the assumptions in our model are
reasonable, the two methods should give similar results. This
has been shown to be the case when spike count is used as the
neural code (Gershon et al. 1998); we found that the two
methods also give similar results for the (f1, f2) code used
here. The least-squares line relating the two information esti-
mates had intercept 0.04 and slope indistinguishable from 1.
The r2 value was 0.94. The difference between the two mea-
surements was of the order of magnitude by which Golomb et
al. (1997) found that the neural network underestimates trans-
mitted information with limited numbers of samples. Finding
that the information measurements using the two methods are
similar led us to believe that the assumptions in our model are
reasonable and that the model can be used to estimate channel
capacity.

Figure 9 shows, for each neuron, the transmitted information
using (f1, f2) as the neural code plotted against transmitted
information using spike count as the neural code. There was no
significant difference in the information transmitted using the
spike count code by neurons in V1 and IT (V1: 0.35 bits
median, interquartile range 0.27–0.55; IT: 0.31 bits median,
interquartile range 0.18–0.39;P . 0.01 Kruskal-Wallis). Al-
though the increase in transmitted information from the spike
count code to the (f1, f2) code is significantly larger in V1
than in IT (P , 0.01), the difference in information transmitted
using the (f1, f2) code is still not significant (V1: 0.52 bits
median, interquartile range 0.40–0.78; IT: 0.37 bits median,
interquartile range 0.22–0.55;P . 0.01). This represents an

FIG. 5. Spike count-f2 envelope of a V1
cell. Horizontal axis shows spike count (which
is strongly correlated withf1), the vertical axis
f2. Dots show spike count andf2 for individ-
ual trials. Thick lines show the spike count-f2

envelope predicted using the linear relation
between log(spike count) and log(variance) of
f2 in responses with that spike count, and the
quadratic relation between spike count and the
mean off2 in responses with that spike count,
and the assumption that the distribution off2

in responses with a given spike count is nor-
mal. Thin lines show the spike count-f2 enve-
lope calculated by taking the largest (or small-
est) possible projection onto thef2 waveform
of responses with a given number of spikes.
More extreme estimate does not take into ac-
count when spikes are most likely to occur or
even that it is unlikely that many spikes will
occur at nearly the same time. Spike count is
used here instead off1 for ease of comparison
with the extreme bounds.
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increase in transmitted information of 55% (median; interquar-
tile range 22–74%) for neurons in V1, and 19% (median;
interquartile range 9–41%) for neurons in IT. Transmitted
information usingf1 (which is correlated strongly with spike
count) as the code was 12% (median; interquartile range
3–29%) greater than transmitted information using spike count
in V1 neurons and 5% (median; interquartile range21–11%)
greater in IT.

To check that we did not lose stimulus-related information
by smearing spike arrival times with too broad a convolution
kernel, we repeated the information calculations with re-
sponses smoothed using a Gaussian kernel with a standard
deviation of 1 ms rather than 5 ms. No additional information
was found.

Channel capacity

Figure 10 shows, for each neuron, the channel capacity using
(f1, f2) as the neural code plotted against channel capacity
using spike count as the neural code. There was a small but
significant difference between the channel capacities using

spike count code of neurons in V1 and IT (V1: 1.1 bits median;
interquartile range 0.91–1.30; IT: 1.4 bits median; interquartile
range 1.2–1.5;P , 0.01 Kruskal-Wallis). There was no sig-
nificant difference in channel capacity using the (f1, f2) code
(V1: 2.0 bits median; interquartile range 1.8–2.3; IT: 2.2 bits
median; interquartile range 1.8–2.5). This represents an in-
crease in channel capacity of 84% (median; interquartile range
62–124%) for neurons in V1 and an increase of 52% (median;
interquartile range 32–95%) for neurons in IT. This increase in
channel capacity is a result of temporal modulation and is
larger than estimated using only the observed responses (trans-
mitted information). Channel capacity usingf1 (which was
correlated strongly with spike count) as the code differed from
channel capacity using spike count as the code by 7% (median;
interquartile range27–22%).

We performed several analyses to verify that our estimates
of channel capacity are robust with respect to small changes in
the response space boundaries. As for spike count code (Ger-
shon et al. 1998), channel capacity depends on the range of
responses the cell is capable of emitting in response to a
stimulus. If we underestimate a neuron’s dynamic range, we

FIG. 6. Predictors of the mean and variance off2 for
a given range off1. A: dividing the range off1 into
“slices”. Top left scatterplotfrom Fig. 4 is reproduced
with the boundaries of thef1 slices superimposed.●,
(f1, f2) for a single response.B: log(variance) off2

values inf1 slices as a linear function of log(mean)f1.
Horizontal axis shows the meanf1 value in each slice.
Vertical axis shows the variance off2 in each slice.●,
values in a singlef1 slice.C: mean off2 in f1 slices as
a quadratic function off1. Horizontal and vertical axes
show the mean values off1 and f2 respectively.●,
values in a singlef1 slice. In bothB andC, ● represent
points based on$11 responses. Points based on fewer
responses are represented by the number of responses.
Regression lines were calculated using only means and
variances based on$11 responses. Note that the axes in
A andC are linear, whereas the axes inB are logarith-
mic.

2868 M. C. WIENER AND B. J. RICHMOND



will underestimate its channel capacity. Here we estimated the
neuron’s dynamic range based on the responses observed. It is
possible that we have not used stimuli that elicit the highest
possible firing rates (and sof1) from these neurons. Nonethe-
less the peak firing rates we saw in these V1 and IT neurons are
similar to those reported by others using a wide variety of
stimuli, including natural stimuli (Baddeley et al. 1997; Perrett
et al. 1984; Rolls 1984; Rolls et al. 1982; Tolhurst et al. 1981,
1983; Vogel et al. 1989), so we believe that our estimate of the
dynamic range is reasonable. For several neurons, we exam-
ined the effect of allowing part of the distribution off1 to fall
outside the observed dynamic range. When we allowed as little
as 0.5% or as much as 5% of the distribution off1 to fall
outside the observed range, estimated channel capacity
changed by,4%. Similarly, widening the bounds onf2 for
givenf1 by 5% increased the channel capacity by,3%. If new
evidence were to show that the proper range for eitherf1 or f2
is larger than we have estimated here, channel capacity could
be recalculated using these methods.

Distribution of responses achieving channel capacity

We estimated channel capacity by finding the distribution (in
2 dimensions) of mean (f1, f2) responses that allows the cell
to transmit the maximum possible information using a code
based onf1 andf2.

Figure 11A shows an example of such a distribution. The
horizontal and vertical axes show means off1 andf2, respec-
tively. Shades of gray indicate how frequently each mean is
presented to achieve channel capacity. Because some of these
distributions are quite broad, the distribution of observed re-
sponses arising from this distribution of mean responses is

diffuse (not shown). The projection of the (f1, f2) distribution
onto f1, that is, the distribution of meanf1 implied by the
two-dimensional distribution, is shown as a histogram imme-
diately below. Figure 11B shows the distribution of meanf1
values that achieves channel capacity usingf1 alone as the
neural code. In both histograms the horizontal axis shows mean
f1 values, and the vertical axis shows the frequency with
which distributions with the appropriate mean value are pre-
sented to achieve channel capacity. The projection of the
optimal two-dimensional distribution onto thef1 axis is less
concentrated than the optimal one-dimensional distribution.

Role of further principal components

Throughout this study we limited our analysis to two prin-
cipal components. The reason was practical: using a three-
component code increases the computational burden beyond
the resources currently available to us. We can, however,
address the issue of whether the use of more principal compo-
nents in the response representation can be expected to lead to
substantially higher estimates of information or channel capac-
ity. Successive principal components, by definition, account
for successively smaller portions of the response variance, thatFIG. 7. Log(mean) vs. log(variance) of the distributions off1 elicited by

different stimuli. Horizontal and vertical axes show (on a logarithmic scale) the
mean and variance off1 respectively. Each point represents the responses to
a single stimulus. There were 128 stimuli for the V1 set 1 neuron (E), 16
stimuli for the V1 set 2 neuron (h), and 32 stimuli for the IT cell (Œ).
Least-squares regression line for each data set is shown. This example shows
the cell with the median slope from each data set.

FIG. 8. Variance off2 is better predicted by mean off1 than by mean of
f2. Top: variance off2 by stimulus plotted against meanf1 by stimulus.
Horizontal axis shows meanf1 and the vertical axis shows variancef2.
Bottom: variance off2 by stimulus plotted against meanf2 by stimulus.
Horizontal axis shows meanf2 and the vertical axis shows variancef2. Both:
axes are logarithmic.●, responses elicited by a single stimulus. Regression
lines are superimposed.
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is, their range decreases. This decrease is rapid in our data.
Therefore their information content (and so their contribution
to channel capacity) must decline unless the noise associated
with each principal component also decreases with the range.
Figure 12 shows that this decrease does not happen in our data.
Each column shows the distribution (across 54 cells) of the
signal-to-noise ratio (the variance of mean responses to stimuli
divided by the median variance of responses to single stimuli)
for spike count or one of the first 10 principal components. A
signal-to-noise ratio less than one means that the variability of
responses to a given stimulus is greater than the variability of
mean responses to different stimuli, so the responses distin-
guish only poorly among the stimuli that elicited them. Thus
the third principal component will contribute much less chan-
nel capacity than the first and second principal components,
and the fourth and higher principal components are expected to
contribute insignificantly if at all. We verified that, as expected,
the fifth through tenth principal components contribute no
information not redundant with information in the first princi-
pal component. Thus our code using onlyf1 and f2 should
carry a very large proportion of the information available in the
responses.

D I S C U S S I O N

Here we have constructed a model of neuronal responses,
based on principal component analysis, that includes both
response intensity (firing rate) and a low-precision (610 ms)
representation of temporal modulation. This temporal precision
and this code have been shown to carry a very large portion of
the information useful for the identification of statically pre-
sented two-dimensional stimuli (Heller et al. 1995; McClurkin
et al. 1991; Optican and Richmond 1987; Richmond and Op-
tican 1990; Tovee et al. 1993). Temporal modulation at finer
time scales can be used to signal rapid changes in the stimulus
(Buracas et al. 1998), but thus far has not been proved useful
for stimulus identification.

Transmitted information, which measures how well a set of
responses distinguishes among the stimuli actually presented in
an experiment, is sensitive to exactly which stimuli were
presented and how often. Channel capacity quantifies how
useful a neuron with a particular repertory of responses could
be for stimulus identification under the best possible circum-
stances: increased channel capacity means better stimulus iden-
tification. When the repertory of responses is based on a
particular neuron’s responses, the calculated channel capacity
is an estimate of the neuron’s channel capacity. The accuracy
of the estimate depends, of course, on how well the model
generalizes to responses to stimuli not presented in the exper-
iment. To the extent it was possible to test here, our model
generalized well.

Using transmitted information, it has been estimated for
some of the data used in this study (Heller et al. 1995) and in
other similar studies (Tovee et al. 1993; Victor and Purpura
1996) that temporal modulation adds 0.1–0.2 bits to the infor-
mation carried by spike count alone. Channel capacity based
on the two-principal-component code used here is greater than
channel capacity based on the spike count code by 0.8–0.9
bits. This is nearly equivalent (at least in V1) to adding a
second independent cell using the spike count code. This is
much more than estimated using transmitted information, but
far less than would be expected if all degrees of freedom
provided by the individual spike times carried independent
information. This is true despite the fact that for the code
including temporal modulation we allowed our model to give
the highest estimates of channel capacity consistent with the
response envelope and noise structure estimated from the data
(seeMETHODS).

Representing responses with temporal modulation

Spike count can be thought of as measuring spike arrival
times extremely coarsely, recording only whether each spike

FIG. 9. Transmitted information using spike count or two principal com-
ponents. Horizontal axis shows transmitted information based on spike count.
Vertical axis shows transmitted information based on a code using bothf1 and
f2. —, equality.

FIG. 10. Channel capacity using spike count or 2 principal components.
Horizontal axis shows channel capacity based on spike count alone. Vertical
axis shows channel capacity based on a code usingf1 and f2. —, equality.
Channel capacity using (f1, f2) is always greater than channel capacity using
spike count alone.
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arrived during the sample interval or not. The principal
component code considered here incorporates temporal
modulation on a somewhat less coarse time scale (610 ms).
Is even more precise representation of the time course of
responses from single neurons useful for transmitting infor-
mation about stimuli?

Spike times originally were measured with 1-ms precision;
one way to increase the precision of the representation is to
retain this precision when calculating the spike density func-
tion rather than smoothing the data. A number of researchers
have reported finding information about rapidly changing or
moving stimuli encoded using precisely timed spikes. Bair and
Koch (1996) found that coherently moving random dot stimuli
elicited spikes timed with precisions ranging from62 to 615
ms in neurons in area MT of the monkey brain. Buracas et al.
(1998) found approximately the same range of precision (63 to
plus or minus.10 ms) in area MT in response to rapidly
moving Gabor gratings. Bair and Koch (1996) did not examine
the information content of responses; Buracas et al. (1998) did,
but did not report the least temporal precision necessary to
encode the information they found (although they indicate that
a bin size of 8 ms, corresponding to a precision of64 ms, is
adequate).

When information about the identity of a stationary stimulus

has been examined in the responses of monkey cortical neu-
rons, however, less temporal precision has been found. Heller
et al. (1995) considered a variety of codes with a broad range
of temporal precisions and found that the maximal information
was carried by a principal component code cut off at a band-
width of ;25 Hz in V1 and;10 Hz in IT, corresponding to
measurement precision of approximately610 ms in V1 and
620 ms in IT. Hertz and Richmond (1997) found that the first
spike in responses in V1 was placed with a precision of
approximately615 ms. Victor and Purpura (1996), using a
different approach, found precisions ranging from65 to 615
ms in neurons in areas V1 and V2. More recently Oram et al.
(1999) confirmed directly that high-precision temporal patterns
in neuronal responses from both V1 and LGN are stochasti-
cally related to the spike count and (low-bandwidth) poststimu-
lus time histogram and therefore can carry no information
beyond that available from the spike count and poststimulus
time histogram. In our own data, we found that retaining
greater temporal precision in the responses revealed no addi-
tional information. We conclude that the information carrying
capacity using temporal modulation at the precision used here
(610 ms) is likely to include almost all of the information
carrying capacity available at any time scale for identifying
stationary visual stimuli.

FIG. 11. Distributions of responses that
achieve channel capacity.A: distribution of mean
(f1, f2) pairs that achieves channel capacity
based onf1 andf2. Mean values off1 andf2 are
plotted on the horizontal and vertical axes; shades
of gray show the probability with which distribu-
tions with the given means must be presented to
achieve channel capacity. Note that the means of
the distributions are clustered near opposite edges
of the response space. Because some of these
distributions are broad, however, the resulting
distribution of observed responses is quite dif-
fuse. A histogram of the projection of the distri-
bution of f1 and f2 onto f1 alone is shown
below. B: distribution of meanf1 that achieves
channel capacity usingf1 alone as the neural
code. Mean values off1 are shown on the hori-
zontal axis. Probability with which each meanf1

must be presented to achieve channel capacity is
shown on the vertical axis. Projected distribution
shown inA is less concentrated than this distri-
bution based on thef1 code alone. Two-dimen-
sional distribution loses somef1 information be-
cause the resulting distribution off1 is not
optimal. This loss of information is offset by a
gain in information fromf2.
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Neuronal responses also might be represented more pre-
cisely using more principal components. Successive principal
components have more zero crossings (Fig. 2; see also Mc-
Clurkin et al. 1991; Richmond and Optican 1987, 1990), so
they effectively code higher-frequency fluctuations in the spike
density function and so allow greater localization of when
spikes occurred. However, successive principal components,
by definition, account for successively smaller portions of the
response variance. Therefore their information content (and so
their contribution to channel capacity) must decline unless the
noise associated with each principal component also decreases
with the range. We have shown that this does not happen in our
data (Fig. 12). A variety of studies confirm that a few principal
components carry almost all of the information available in the
principal component representation. Richmond and Optican
(1990) found that the third principal component increased
information transmission by;5% over that transmitted by the
first two principal components for neurons in V1, whereas
Tovee et al. (1993) found an 8% increase. McClurkin et al.
(1991) found a 7% increase for neurons in the lateral geniculate
nucleus. For the data in Heller et al. (1995), the third principal
component adds 8% to the information carried byf1 andf2 in
V1 and,1% in IT, and the fourth principal component adds
,1% in each area. Therefore we believe that the first two
principal components capture most of the temporal coding
capability of these neurons.

Principal components are a powerful statistical tool for rep-
resenting neuronal responses. They identify the features of
responses that tend to change most, leading to representations
that are efficient for both data compression and information
transmission (Campa et al. 1995; Deco and Obradovic 1996;
Linsker 1988; Plumbley 1991). However, the fact that infor-
mation is available in the principal component coefficients
does not mean that information is either used or transmitted in

this form. Codes based on principal components are linear
codes, and linear codes form a small subset of possible neural
codes. The brain may use nonlinear codes that would not be
efficiently conveyed using principal components. Latency, for
example, which is not concentrated in any single principal
component, has been shown to carry information about the
luminance and contrast of visual stimuli (Gawne et al. 1996;
Mechler et al. 1998; Wiener et al. 1998). Information trans-
mission by spike patterns such as bursts also has been studied
(Cattaneo et al. 1981; DeBusk et al. 1997; Reinagel et al.
1999). Nonlinear codes are not necessarily more effective
representations of neuronal spike trains than linear codes
(Fotheringhame and Baddeley 1997), but we cannot rule out
that some nonlinear code might carry more information than
we have found here.

Statistical model

The response model used here relies on the linear relation-
ship between log(mean) and log(variance) off1. This relation
is similar to the frequently observed linear relation between
log(mean) and log(variance) of spike count (Dean 1981; Ger-
shon et al. 1998; Lee et al. 1998; O’Keefe et al. 1997; Tolhurst
et al. 1981, 1983; van Kan et al. 1985; Vogel et al. 1989). We
identified a similar relationship between the log(variance) of
f2 and log(mean) off1, allowing simple modeling off2
response variance.f1 andf2 were modeled as normal distri-
butions (truncated at boundaries estimated from the data; see
METHODS) with the observed mean and variance calculated
using the measured regression relation.

The model abstracts away some of the details of the ob-
served responses, and it is reasonable to ask whether the
modeled responses are sufficiently like the actual responses to
be useful. Estimates of transmitted information using our
model were close to those from a previously validated neural
network method (Golomb et al. 1997; Heller et al. 1995; Kjaer
et al. 1994). This leads us to believe that the model is suffi-
ciently accurate for the information calculations undertaken
here. If a better model of the distributions is found, calculations
similar to those presented here can be used to recalculate
transmitted information and channel capacity.

The response model necessarily is based on the responses
actually observed. It is not certain that the model accurately
predicts the responses that might be elicited using other stim-
uli. Several potential problems with generalizing from ob-
served responses can be identified. First, the responses elicited
using the Walsh patterns used here might not indicate the full
dynamic range of the neurons. We consider this unlikely,
because the ranges of spike counts seen in V1 and IT neurons
in these experiments were similar to the ranges reported by
others using a wide variety of stimuli, including natural stimuli
such as hands and faces (Baddeley et al. 1997; Perrett et al.
1984; Rolls 1984; Rolls et al. 1982; Tolhurst et al. 1981, 1983;
Vogel et al. 1989). Another potential difficulty is that the
logarithms of the mean and variance of responses elicited by
other stimuli might not follow a linear relationship or they
might follow a linear relationship different from the one mea-
sured using these stimuli. Assuming a linear model seems
reasonable because a linear relationship between the loga-
rithms of the means and variances of spike count has been
observed in many parts of the brain (Dean 1981; Gershon et al.

FIG. 12. Fourth and higher principal components of responses are noisy.
Boxplot showing the distribution (across 54 cells) of the signal-to-noise ratio
for spike count and for the first 10 principal component coefficients. The
signal-to-noise ratio is the variance of mean responses to stimuli divided by the
median variance of responses to single stimuli. Notches in each box show 95%
confidence intervals on the median; the edges of the box show the 25th and
75th percentiles of the distribution, and the ends of the extended lines show the
5th and 95th percentiles. A value below 1 means that the variability of
responses to a given stimulus is greater than the variability of mean responses
to different stimuli, so the responses distinguish poorly among the stimuli that
elicited them. Therefore principal components above the 4th are not expected
to carry information.
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1998; Lee et al. 1998; O’Keefe et al. 1997; Tolhurst et al. 1981,
1983; van Kan et al. 1985; Vogel et al. 1989). Furthermore we
cross-validated the model by dividing the stimuli in half and
comparing the resulting mean-variance relations. In all cells,
the two relations were indistinguishable, supporting the mod-
el’s ability to generalize, at least in this limited sense. All of
our stimuli were Walsh patterns, and we are unaware of any
studies comparing the variability of responses elicited by dif-
ferent kinds of stimuli. If responses elicited by other stimuli are
substantially more or less variable than those elicited by the
Walsh patterns, our model may not generalize well to re-
sponses elicited by other stimuli.

We summarize some of the simplifications made in our
model in Table 1.

Spike count, temporal modulation, and channel capacity

Spike count and temporal modulation are linked at the most
basic level. When there are no spikes, there can be no temporal
modulation. Trains with larger numbers of spikes can form
larger numbers of distinct temporal patterns: in the crudest
estimate, the number of possible temporal patterns involvingk
spikes isn!/[k!(n 2 k)!], wheren is the number of distinct time
bins. If each pattern could occur with equal probability, the
number of temporal patterns observed, and therefore the range
of f2, would grow rapidly with spike count. If the train
becomes crowded— that is, when there are more than half as
many spikes as bins—the range decreases again, but this is not
an issue in our data.

The range off2 does increase with increasing spike count
andf1 (Fig. 4) but more slowly than would be expected if all
spike trains withk spikes were equally likely.f2 is the inner
product of a spike density function withF2, the second prin-
cipal component of the data. BecauseF2 tends to have a
narrow peak (Richmond and Optican 1987), an extreme posi-
tive or negative value off2 would indicate that many spikes
occur in adjacent bins in a response. Such tight bunching of
spikes did not occur in these data. In fact, such bunching is
unlikely to occur in neurons with a refractory period. This may
give at least a partial understanding of why the observed range
of f2 is smaller than would be expected if arbitrary patterns of
spikes were possible (Fig. 5).

Within the constraints estimated from the data, we biased
our model to increase estimates of channel capacity due to
temporal coding. We did not penalize distributions for proba-
bility weight falling outside the response envelope bounds for
f2 (as we did for probability weight falling outside the ob-
served range off1); we simply ignored that portion of the

distribution. This allows the widest possible separation be-
tween distributions, increasing the estimate of channel capac-
ity. This deliberate overestimation was undertaken to obtain an
upper bound on channel capacity. Estimates of transmitted
information were unaffected, because the distributions of ob-
served means and variances fell within the response envelope.

Comparison with other studies

Some researchers have reported that rapidly moving or rap-
idly changing stimuli elicit large numbers of precisely timed
spikes in the lateral geniculate nucleus and area MT, transmit-
ting, in some cases,.100 bits/s of information about the
changing stimulus (Buracas et al. 1998). However, only much
lower precision timing (610 ms) and much lower information
transmission rates (up to;4 bits/s) have been measured using
static stimuli (Heller et al. 1995). Our estimates of channel
capacity (;2.2 bits in a 330-ms window or;6.6 bits/s), which
were designed to err on the side of generosity, fall short of even
10 bits/s (even allowing for a large, and unlikely, contribution
from additional principal components). A major difference
between these approaches is that in the former, but not the
latter, the neuron is essentially entrained by the rapid changes
in the stimulus. Theunissen and Miller (1995) have referred to
this as temporal coding of a signal, “characterized by a one-
to-one correspondence between the time of occurrence of a
sensory event and the time of occurrence of the corresponding
neural process,” distinguishing it from temporalencoding of a
signal, in which “information about static or dynamic signals is
encoded in some aspect(s) of the temporal pattern of action
potentials” without the action potentials being tied to changes
in the signal.

The effects of entrainment can be seen even during experi-
ments with static stimuli. Information transmission rates as
high as 30 bits/s occur during the onset of responses immedi-
ately after presentation of static stimuli (Heller et al. 1995),
though these rates drop after;50 ms. Thus the high rate of
information transmission is not sustained during typical fixa-
tions (of;300 ms) between saccades in normal vision. None-
theless Richmond et al. (1999) found that in V1 neurons the
total amount of information available about the identity of
stimuli played one after another in a movie was greater when
each frame was presented for 170 ms than when each frame
was presented for 136 ms. Elsewhere this information has been
found to plateau;150–200 ms after stimulus presentation
(Gershon et al. 1998). Thus maintaining the highest possible
information transmission rate by rapidly changing the stimuli

TABLE 1. Simplifications used in the response model

Simplification for Modeling Evidence Could it Be Changed?

Responses distributed as modified Gaussians Based on the data; presented inRESULTS Given evidence for other distributional
forms, could use them

No hidden variables: variances off1 andf2

depend only on the means off1 andf2

Mean-variance relations for spike count,
f1, andf2

Difficult; a model with additional
stochasticity might be possible

f1 andf2 are uncorrelated for each
stimulus (except as imposed by response
space boundaries)

No consistent correlations seen except
at boundaries

Given evidence for correlations, easy
to incorporate them

Variance off2 depends only on mean of
f1, not on mean off2

Based on the data; presented inRESULTS Must specify means off1 andf2, so
could easily incorporate influence of
mean (f2)
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may not be the best strategy if the goal is to identify objects in
the visual field.

Summary

We have constructed a model of responses including both
response strength and temporal modulation of firing rate. This
model clarifies the implications of assuming that the relations
between the means and variances of response features observed
during an experiment are representative of the neuron’s re-
sponses in general. The central feature of the model is that the
variances of response features are predictable from the means.
This model demonstrates that the variances of both response
strength and temporal modulation depend on the mean re-
sponse strength, with important implications for neural infor-
mation processing. As we have emphasized, use of the model
imposes dependence on how well the model generalizes to
responses not observed in our experiments. The results here
raise two conflicting possibilities. The first is that the experi-
ments were not designed so as to display the best capabilities
of these neurons. The other is that our assumption that all
possible responses within the two-dimensional response space
actually can arise may not be true. This naturally leads to
further experiments to verify under what conditions assump-
tions made about these features remain valid. A critical ques-
tion for the future is whether response properties elicited by
stimuli of one kind (here, Walsh patterns) are the same in
responses elicited by stimuli of other kinds.

A P P E N D I X

The search for the maximizing set of probabilities is subject to three
constraints: the probabilities must be nonnegative; the probabilities
must sum to one; and the range of means must be finite. The first two
constraints arise from intrinsic properties of probability distributions.
If the third constraint is violated, the transmitted information can be
infinite and the problem of maximizing transmitted information is
ill-posed. The maximization ofEq. 6 is performed numerically. The
numerical implementation requires that we discretize the continuous
space of mean responses. We denote these discretized probabilities by

p# ~m1! 5 E
m1

m11Dm1

dh1p~h1!

p# ~m2! 5 E
m2

m21Dm2

dh2p~h2!

The first and second constraints are implemented by requiring that
0 # p#(m) # 1 for all m, and thatSmp#(m) 5 1, respectively. The third
constraint is implemented by penalizing distributions of means that
lead to distributions off1 that are inconsistent with observed values
of f1 (recall thatf1 andf2 denote the coefficients with respect to the
first and second principal components, respectively). The definition of
the conditional distributions (Eq. 2) forces the estimated distribution
of responses to fall inside the estimatedf1,f2 envelope.

Specifically, if f1,min andf1,max are the minimum and maximum
permittedf1 values for a distribution, then we demand that

O
f1.f1,max

C1~f1 2 f1,max!p~f1! 1 O
f1,f1,min

C2~f1,min 2 f1!p~f1! # e (A1)

wherep(f1) is defined by

p~f1! 5 E
M1,M2

dm1dm2p~m1, m2!p~f1um1, m2! (A2)

bothC1(x) andC2(x) are nondecreasing functions ofx, ande is small.
Eq. A2ensures thatp(f1) falls off rapidly for values of the principal
component coefficients outside the permitted range. To implement the
optimization procedure, we need to translate this into a constraint on
p#(m) because the search for the maximum value of the transmitted
information occurs inp#(m) space. Defining the function

C~h! ; O
f1.f1,max

C1~f1 2 f1,max!p~f1uh!

1 O
f1,f1,min

C2~f1,min 2 f1!p~f1uh! (A3)

and combining equations A1 and A2, we arrive at

O
h

C~h!p# ~h! # e (A4)

which represents our third constraint. In our numerical calculations.
we usee 5 0.01.

The choice of the functionsC1 andC2 involves a scaling issue not
present when calculating channel capacity based on spike count
(Gershon et al. 1998). Because the spike count takes on only integer
values it has a natural scale that can be used in the penalty functions
C1 andC2. The principal components, however, have no such natural
scale. Dividing all the principal component coefficients by some
constant should not change the information or channel capacity, and
therefore we must make sure that it does not change the values ofC1

andC2 either. We have chosen to scaleC1 andC2 by the bin size
used forf1 in the numeric calculations.

C1~f1 2 f1,max! 5 Sf1 2 f1,max

bin size
D 2

C2~f1,min 2 f1! 5 Sf1,min 2 f1

bin size
D 2

This means that each of the penalty functions grows roughly as if the
bins represented spike count. Note that this means that using a larger
number of more narrow bins to cover a given range allows less of the
probability mass to fall outside the observed range than using a
smaller number of wider bins. However, it does guarantee (as for
spike count) thate represents the largest portion of the (unweighted)
probability mass that can possibly fall outside the estimated range
(based on the observed values as described above). This scaling
problem arises only when we want to penalize responses in a way that
grows as the responses fall further out of the observed range. If the
penalty weight is equal for all probability mass falling outside the
estimated range, the scale does not matter.

To find the channel capacity, we maximize transmitted information
(Eq. 6) under the constraints discussed in the preceding text. Any
standard minimization algorithm can be used. We used a sequential
quadratic programming method (Lawrence et al. 1997). We first found
the distribution that achieved channel capacity forf1 alone. We
uniformly smeared this distribution over thef2 dimension for each
value off1 to create a two-dimensional distribution, which was used
as the starting point of the minimization. Because the search space is
closed and convex, and transmitted information is a convex function
of the probabilities, we are guaranteed a single global minimum
(Cover and Thomas 1991). In two neurons, we nonetheless verified
that the minimization converged to the same solution from several
starting points. We also checked in two cells that increasing the
resolution of the discretization off1 and f2 did not significantly
change our results.
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